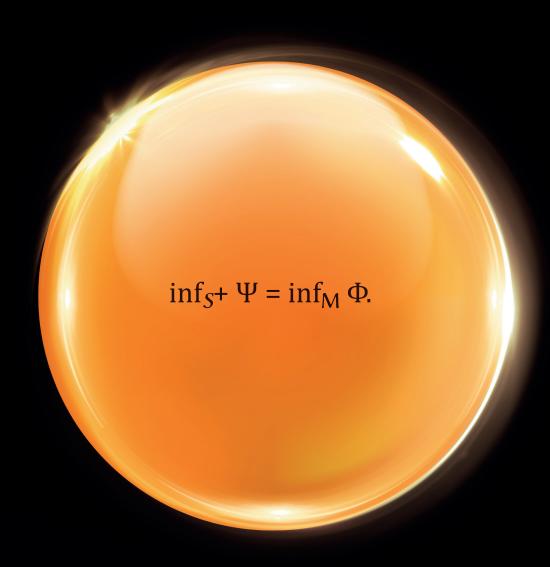
A Variedade de Nehari Generalizada e Aplicações



JOSÉ PASTANA

José Pastana de Oliveira Neto

A Variedade de Nehari Generalizada e Aplicações.

Belém-PA RFB Editora 2023

Todo o conteúdo apresentado neste livro é de responsabilidade do(s) autor(es). Esta obra está licenciada com uma Licença Creative Commons Atribuição-SemDerivações 4.0 Internacional.

Nossa missão é a difusão do conhecimento gerado no âmbito acadêmico por meio da organização e da publicação de livros científicos de fácil acesso, de baixo custo financeiro e de alta qualidade!

Nossa inspiração é acreditar que a ampla divulgação do conhecimento científico pode mudar para melhor o mundo em que vivemos!

Equipe RFB Editora

© 2023 Edição brasileira by RFB Editora © 2023 Texto by Autor Todos os direitos reservados

RFB Editora

CNPJ: 39.242.488/0001-07

www.rfbeditora.com adm@rfbeditora.com

91 98885-7730

Av. Governador José Malcher, nº 153, Sala 12, Nazaré, Belém-PA,

CEP 66035065

Editor-Chefe

Prof. Dr. Ednilson Souza

Diagramação e capa

Autor

Revisão de texto

Autor

Bibliotecária

Janaina Karina Alves Trigo Ra-

mos

Produtor editorial

Nazareno Da Luz

Catalogação na publicação RFB Editora

V299

A Variedade de Nehari Generalizada e Aplicações / José Pastana de Oliveira Neto. – Belém: RFB, 2023.

Livro em PDF

58p.

ISBN: 978-65-5889-483-4

DOI: 10.46898/rfb.474579e9-daef-430b-99ae-fa2a05a88966

1. Matemática. I. Oliveira Neto, José Pastana de. II. Título.

CDD 510

Índice para catálogo sistemático

I. Matemática.

Conselho Editorial

Prof. Dr. Ednilson Sergio Ramalho de Souza - UFOPA (Editor-Chefe)

Prof. Dr. Laecio Nobre de Macedo-UFMA

Prof^a. Ma. Rayssa Feitoza Felix dos Santos-UFPE

Prof. Me. Otávio Augusto de Moraes-UEMA

Prof. Dr. Aldrin Vianna de Santana-UNIFAP

Prof^a. Ma. Luzia Almeida Couto-IFMT

Prof^a. Dr^a. Raquel Silvano Almeida-Unespar

Prof. Me. Luiz Francisco de Paula Ipolito-IFMT

Prof. Me. Fernando Vieira da Cruz-Unicamp

Prof. Dr. Carlos Erick Brito de Sousa-UFMA

Profa. Dra. Ilka Kassandra Pereira Belfort-Faculdade Laboro

Prof^a. Dr. Renata Cristina Lopes Andrade-FURG

Prof. Dr. Elias Rocha Gonçalves-IFF

Prof. Dr. Clézio dos Santos-UFRRJ

Prof. Dr. Rodrigo Luiz Fabri-UFJF

Prof. Dr. Manoel dos Santos Costa-IEMA

Profa. Ma. Adriana Barni Truccolo-UERGS

Prof. Me. Pedro Augusto Paula do Carmo-UNIP

Prof.^a Dr^a. Isabella Macário Ferro Cavalcanti-UFPE

Prof. Me. Alisson Junior dos Santos-UEMG

Prof. Me. Raphael Almeida Silva Soares-UNIVERSO-SG

Prof. Dr. Rodolfo Maduro Almeida-UFOPA

Prof. Me. Tiago Silvio Dedoné-Faccrei

Prof. Me. Fernando Francisco Pereira-UEM

Prof. Dr. Deivid Alex dos Santos-UEL

Prof. Me. Antonio Santana Sobrinho-IFCE

Prof.^a Dr^a. Maria de Fatima Vilhena da Silva-UFPA

Profa. Dra. Dayse Marinho Martins-IEMA

Prof. Me. Darlan Tavares dos Santos-UFRI

Prof. Dr. Daniel Tarciso Martins Pereira-UFAM

Prof.^a Dr^a. Elane da Silva Barbosa-UERN

Prof. Dr. Piter Anderson Severino de Jesus-Université Aix Marseille

Dedicatória

Primeiramente a Deus, a minha família e em especial a minha mãe Odinea Furtado Correa, meu pai Francisco Souza de Oliveira e a minha Companheira Gabriela Coutinho da Cunha.

Notações e Terminologias

- \mathcal{N} variedade de Nehari;
- \mathcal{M} variedade de Nehari generalizada;
- $\sigma(T)$ o espectro do operador T;
- → convergência forte;
- → convergência fraca;
- → imersão de espaços;
- f(x,u) = o(u) denotará uma função f que é muito pequena comparada à u;
- I'(u) = o(||u||) denota a derivada de um funcional que é muito pequena comparada à ||u||;
- $L^p_{loc}(\mathbb{R}^N)$ espaço das funções $u:\mathbb{R}^N\to\mathbb{R}$ que são localmente p-integráveis sobre cada subconjunto compacto $K\subset\mathbb{R}^N$.

Prefácio

Neste livro apresentaremos o método da variedade de Nehari generalizada introduzido por Zsulkin e Weth em [10]. Aqui dissertaremos o método de forma didática e clara, onde estaremos interessados em fazer uso do método para resolvermos os três problemas abaixo:

(1) Existência de solução ground state e Multiplicidade de solução : Seja $\Omega \subset \mathbb{R}^N$ um domínio limitado e considere o problema de autovalor,

$$\begin{cases}
-\Delta u - \lambda u = f(x, u), & x \in \Omega \\
u = 0, & x \in \partial \Omega.
\end{cases}$$
(1)

Com $\lambda < \lambda_1$, onde λ_1 denota o primeiro autovalor de Dirichlet de $-\Delta$ em Ω e $f \in C(\Omega \times \mathbb{R}, \mathbb{R})$ satisfaz a condição de crescimento

$$|f(x,u)| \le a \left(1 + |u|^{q-1}\right)$$
 (2)

para alguns a>0 e $2< q<2^*$, com $2^*:=2N/(N-2)$ se $N\geq 3$ e $2^*:=\infty$ caso contrário.

(2) Existencia de Solução ground state:

$$\begin{cases}
-\Delta u + V(x)u = f(x, u), & x \in \mathbb{R}^N \\
u(x) \to 0, & |x| \to \infty.
\end{cases}$$
(3)

Se V é limitada, e f é contínua e satisfaz a condição de crescimento (2), e com funcional

$$\Phi(u) := \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx - \int_{\mathbb{R}^N} F(x, u) dx.$$
 (4)

(3) Por fim concluímos o trabalho estudando a multiplicidade de solução e a existência de solução ground state para o sistema

$$\begin{cases}
-\Delta u_1 = h(x, u_2), & x \in \Omega \\
-\Delta u_2 = g(x, u_1), & x \in \Omega \\
u_1 = u_2 = 0, & x \in \partial\Omega
\end{cases}$$
(5)

Com o funcional associado dado por

$$\Phi(u) := \int_{\Omega} \nabla u_1 \cdot \nabla u_2 dx - \int_{\Omega} ((G(x, u_1)) + H(x, u_2)) dx \text{ para } u = (u_1, u_2) \in E,$$

onde,

$$G(x, u_1) := \int_0^{u_1} g(x, s) ds$$
 e $H(x, u_2) := \int_0^{u_2} h(x, s) ds$.

e ambos satisfazendo a condição de crescimento (2). Encerrando assim as aplicações do trabalho.

Palavras-chave: Variedade de Nehari Generalizada, Solução Ground State, Condição Palais-Smale.

Conteúdo

Introdução		3
1	A Variedade de Nehari Generalizada	10
2	Problema de autovalor	26
3	Um problema do tipo Schrödinger	34
4	Um Sistema não Linear	40
\mathbf{A}	Resultados Importantes	45

Introdução

Neste trabalho estudaremos o método da variedade de Nehari generalizada por Szulkin e Weth em [10] e faremos algumas aplicações. Para a melhor compreensão vamos introduzir brevemente um pouco sobre o método desenvolvido por Szulkin e Weth, para isso seja E um espaço de Banach real uniformemente convexo, $\Phi \in C^1(E,\mathbb{R})$ e $\Phi(0) = 0$. Suponhamos as seguintes condições

(I1) Existe uma função normalização φ ;

$$u \mapsto \psi(u) = \int_0^{\|u\|} \varphi(t)dt \in C^1(E \setminus \{0\}, \mathbb{R}),$$

sendo que $J:=\psi'$ é limitado em conjuntos limitados e J(w)w=1 para todo $w\in S=\{w\in E:\|w\|=1\};$

- (I2) Para cada $w \in E \setminus \{0\}$ existe s_w tal que se $\alpha_w(s) := \Phi(sw)$, então $\alpha_w'(s) > 0$ para $0 < s < s_w$ e $\alpha_w'(s) < 0$ para $s > s_w$;
- (I3) Existe $\delta > 0$ tal que se $s_w \geq \delta$ para todo $w \in S$ e para cada subconjunto compacto $\mathcal{K} \subset S$, existe uma constante $C_{\mathcal{K}}$ tal que $s_w \leq C_{\mathcal{K}}$.

Define-se como a variedade de Nehari o conjunto $\mathcal N$ dado por

$$\mathcal{N} := \{ u \in E, u \neq 0 : \Phi'(u)u = 0 \},$$

As condições acima são essenciais para a existência de um homeomorfismo entre S e \mathcal{N} , para obter sobre certas condições uma infinidade de pares de pontos críticos para $\Phi|_S$ e por consequência do homeomorfismo, também garantirá uma

infinidade de pares de pontos críticos para $\Phi|_{\mathcal{N}}$. Aqui, neste momento, não nos estenderemos para que possamos conversar melhor mais à frente.

Continuando neste momento introdutório, vamos falar um pouco sobre o método de Nehari aplicado pelo matemático israelense Zeev Nehari. Considere E um espaço de Banach reflexivo e $\Phi \in C^1(E,\mathbb{R})$, e se u é um ponto crítico de Φ então $\Phi'(u)u=0$ para todo $u\in E$. Portanto $u\in \mathcal{N}$. É importante ressaltar que a existência do conjunto \mathcal{N} quando mencionado de modo geral não necessita que tenhamos as condições (I1)-(I3) neste caso estamos olhando simplesmente para o método de Nehari, por Zeev Nehari.

O método de Nehari se resume em minimizar o funcional Φ sobre \mathcal{N} , isto é, obter $u \in \mathcal{N}$;

$$\Phi(u) = c := \inf_{u \in \mathcal{N}} \Phi(u)$$

O matemático israelense Zeev Nehari (1915 – 1978), desenvolveu esse método através de dois artigos [6] e [7]. Nesses artigos Nehari considerou uma EDO de segunda ordem em um intervalo I e mostrou a existência de solução não trivial minimizando o funcional sobre \mathcal{N} , com Φ de classe C^2 associado ao problema e usou o Teorema da Função Implícita para mostrar que o ponto de mínimo de Φ em \mathcal{N} era ponto crítico em todo o espaço. Em [7] mostrou a existência de solução com um determinado número de nós em I. Desde então o método vem sendo estudado e outros matemáticos foram criando outros métodos como o de fibração por Pohozaev [2].

Pankov em [8] apresenta uma generalização da variedade de Nehari, que denotaremos por \mathcal{M} . Ainda supondo o funcional Φ sendo C^2 e a seguinte decomposição ortogonal $E = E^+ \oplus E^0 \oplus E^-$ com E um espaço de Hilbert. vamos esboçar brevemente o método de Pankov. Ele primeiro mostra que \mathcal{M} é uma variedade C^1 e é uma restrição natural no sentindo de que u é ponto crítico não

trivial de Φ se, e somente se, $u \in \mathcal{M}$ e é um ponto crítico de $\Phi|_{\mathcal{M}}$. Uma vez que

$$c := \inf_{u \in \mathcal{M}} \Phi|_{\mathcal{M}} > -\infty,$$

o princípio variacional de Ekeland produz uma sequência Palais-Smale para $\Phi|_{\mathcal{M}}$ no nível c. Pankov então usava o fato de $f \in C^1$ juntamente com

$$|f'_u(x,u)| \le a(1+|u|^{p-2}) \ e \ 0 < \frac{f(x,u)}{u} < \theta f'_u(x,u),$$

com $\theta \in (0,1)$ e para todo $u \neq 0$, para mostrar que essa sequencia Paleis-Smale é limitada e encontra um minimizador com os argumentos de concentração e compacidade. Uma vez que não estamos assumindo que f é diferenciável e nem a equação acima, logo \mathcal{M} não precisa ser uma $C^1-variedade$, e com isso o método de Pankov não se aplica. Como contornar então tal dificuldade?

Szulkin e Weth em [10] apresentaram um resultado abstrato, o qual exigia apenas que o funcional fosse C^1 e tinham mínimo local em 0, e $\Phi = I_0 - I$ com I_0 homogêneo e o I completamente contínuo onde apresentaram varias aplicações. Onde não exigiam mais que o funcional fosse C^2 mas apenas C^1 , no mesmo trabalho apresentaram a versão generalizada da variedade de Nahari, agora com Φ sendo C^1 , este foi o material base para o desenvolvimento da dissertação. Faremos resultados importantes sobre a variedade \mathcal{M} , que nos garantiram multiplicidade de pares de pontos críticos na mesma, que será nossas soluções dos problemas (1), (3) e (5) apresentados no resumo.

Vamos agora conversar um pouco sobre o método utilizado. Uma vez que Φ é C^1 não garantimos que \mathcal{M} é uma variedade C^1 , no entanto ainda continua sendo uma variedade topológica. Contornamos essa dificuldade em não poder aplicar o método de Pankov quando garantimos a existência de uma correspondência bijetiva entre pontos críticos de $\Phi|_{S^+}$ com à variedade \mathcal{M} através de um homeomorfismo, com

$$S^+ := S \cap E^+ = \{u \in E^+ : ||u|| = 1\}.$$

 $E S^+$ é uma subvariedade C^1 , vemos este fato em Szulkin [11]. Uma vez que $\Phi|_{S^+}$ é limitado inferiormente e satisfaz a condição Paleis-Smale-(PS), assim garantimos uma infinidade de pares de pontos críticos para $\Phi|_{S^+}$, pelo homeomorfismo também garantimos sobre \mathcal{M} , no momento em que provamos que o funcional Φ satisfaz a condição Paleis-Smale sobre \mathcal{M} . A apresentação deste homeomorfismo será feita na Proposição 1.1 do trabalho.

Supondo $\Phi \in C^1(E,\mathbb{R})$ e a decomposição $E=E^+\oplus E^0\oplus E^-,$ onde $\dim E^0<\infty,$ e Φ satisfazendo:

- (A1) $\Phi(u) = \frac{1}{2}||u^+||^2 \frac{1}{2}||u^-||^2 I(u)$, onde I(0) = 0, $\frac{1}{2}I'(u)u > I(u) > 0$ para todo $u \neq 0$ e I é fracamente semicontínuo inferiormente;
- (A2) Para cada $w \in E \setminus F$, existe um único ponto crítico não trivial $\widehat{m}(w)$ de $\Phi|_{\widehat{E}(w)}$. Além disso, $\widehat{m}(w)$ é o único máximo global de $\Phi|_{\widehat{E}(w)}$
- (A3) Existe $\delta > 0$ tal que $||\widehat{m}(w)^+|| \geq \delta$, para todo $w \in E \setminus F$, e para cada subconjunto compacto $\mathcal{W} \subset E \setminus F$, existe uma constante $C_{\mathcal{W}}$ tal que $||\widehat{m}(w)|| \leq C_{\mathcal{W}}$ para todo $w \in \mathcal{W}$.

Para assim definirmos a variedade de Nehari generalizada como

$$\mathcal{M} = \{ u \in E \setminus (E^0 \oplus E^-) : \Phi'(u)u = 0 \text{ e } \Phi'(u)v = 0 \text{ para todo } v \in (E^0 \oplus E^-) \}.$$
que será o nosso conjunto onde queremos soluções.

O resultado principal do capitulo 1 o seguente Teorema:

Teorema 0.1 Supondo que Φ satisfaz (A1), (A2) e

- (i) I'(u) = o(||u||) quando $u \to 0$;
- (ii) $I(su)/s^2 \to \infty$ uniformemente para u em um subconjunto fracamente compacto de $E \setminus \{0\}$ quando $s \to \infty$;

(iii) I' é completamente contínua.

Então a equação $\Phi'(u) = 0$ tem tem uma solução **ground state**. Além disso, se I for par, então está equação tem infinitos pares de soluções.

Nossa primeira aplicação do método é o problema: Seja $\Omega \subset \mathbb{R}^N$ um domínio limitado e considere o problema de autovalor,

$$\begin{cases}
-\Delta u - \lambda u = f(x, u), & x \in \Omega \\
u = 0, & x \in \partial \Omega.
\end{cases}$$
(6)

Com $\lambda < \lambda_1$, onde λ_1 denota o primeiro autovalor de Dirichlet de $-\Delta$ em Ω e $f \in C(\Omega \times \mathbb{R}, \mathbb{R})$ satisfaz a condição de crescimento

$$|f(x,u)| \le a \left(1 + |u|^{q-1}\right)$$
 (7)

para alguns a>0 e $2< q<2^*$, com $2^*:=2N/(N-2)$ se $N\geq 3$ e $2^*:=\infty$ caso contrário. Tendo assim o seguinte funcional associado

$$\Phi(u) = \int_{\Omega} (|\nabla u|^2 - \lambda u^2) dx - \int_{\Omega} F(x, u) dx.$$

Neste problema garantiremos uma infinidade de pares de soluções ground state fazendo uso do Teorema acima, para aplicarmos o método precisamos que Φ satisfaça (A1), (A2) e (A3). Este fato começa em escrevermos o funcional associado ao problema como em (A1), isto é

$$\Phi(u) = \frac{1}{2} \|u^+\|^2 - \frac{1}{2} \|u^-\|^2 - I(u).$$

A próxima aplicação que será exposta no capitulo 3 é a equação não linear de Schrödinger com um Potencial V no \mathbb{R}^N .

$$\begin{cases}
-\Delta u + V(x)u = f(x, u), & x \in \mathbb{R}^N \\
u(x) \to 0, & |x| \to \infty.
\end{cases}$$
(8)

Se V é limitada, e f é contínua e satisfaz a condição de crescimento dada, e com o funcional associado

$$\Phi(u) := \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx - \int_{\mathbb{R}^N} F(x, u) dx.$$
 (9)

Em [12] Szulkin e Weth mostram que se f é impar em u, e adicionando a condição de Ambrosseti-Rabinovitz então o problema não linear de Schrödinger tem uma infinidade de soluções geometricamente distintas, no entanto aqui vamos apenas provar a existência de uma solução de estado fundamental via minimização em \mathcal{M} , fazendo uso de resultado de concentração e compacidade, e claro sem esquecermos de mostrar que o funcional em (14) satisfaz (A1), (A2) e (A3). Em outra palavras se resumirá em demonstrar o seguente Teorema:

Teorema 0.2 Supondo $V \in C(\mathbb{R}^N, \mathbb{R}), f \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ satisfazendo (2.6)

- (i) V, f são 1-periódicas em $x_1, ..., x_N$, $0 \in \sigma(-\Delta+V)$ e $\sigma(-\Delta+V) \cap (-\infty, 0) \neq \emptyset$,
- (ii) f(x, u) = o(u) uniformemente em x quando $u \to 0$,
- (iii) $u \to f(x,u)/|u|$ está crescendo estritamente em $(-\infty,0)$ e $(0,\infty)$
- (iv) $F(x,u)/u^2 \to \infty$ uniformemente em x quando $|x| \to \infty$

Então o problema (8) possui uma solução ground state.

Em suma, no capitulo 4 vamos apresentar nossa ultima aplicação do método que será o seguinte sistema não linear

$$\begin{cases}
-\Delta u_1 = h(x, u_2), & x \in \Omega \\
-\Delta u_2 = g(x, u_1), & x \in \Omega \\
u_1 = u_2 = 0, & x \in \partial\Omega.
\end{cases} \tag{10}$$

Com o funcional associado dado por

$$\Phi(u) := \int_{\Omega} \nabla u_1 \cdot \nabla u_2 dx - \int_{\Omega} ((G(x, u_1)) + H(x, u_2)) dx \text{ para } u = (u_1, u_2) \in E,$$

onde,

$$G(x, u_1) := \int_0^{u_1} g(x, s) ds$$
 e $H(x, u_2) := \int_0^{u_2} h(x, s) ds$.

Nesta aplicação vamos garantir a multiplicidade de soluções ground state, fazendo uso fortemente do Teorema 0.1 acima, de maneira semelhante à primeira aplicação dada em (6). Concluindo assim as nossas aplicações do método.

Capítulo 1

A Variedade de Nehari

Generalizada

Neste capitulo, vamos começar apresentando a variedade de Nehari generalizada segundo Szulkin e Weth em [10]. Neste momento vamos supor três condições de suma importância para o desenvolvimento do método, que são (A1) - (A3), onde serão definidas em breve. De modo geral este método se resume em fazer uso de um homeomorfismo entre a esfera unitária em um espaço de Banach reflexivo com a variedade de Nehari. Agora, com este método suponhamos que o funcional Φ seja apenas C^1 , e uma vez que não estamos supondo o funcional C^2 a variedade de Nehari não será uma variedade de classe C^1 ou C^1 -variedade, mas ainda sim será uma variedade topológica, neste caso uma variedade simples, ou C^0 -variedade. E para contornar esta dificuldade usasse fortemente o fato da esfera unitária em um espaço de Banach de dimensão infinita ser uma C^1 -subvariedade, onde pode ser visto em [11].

Ao longo deste trabalho, supomos que E é um espaço de Hilbert e com a seguinte decomposição ortogonal

$$E = E^+ \oplus E^0 \oplus E^- \equiv E^+ \oplus F, \quad F = E^0 \oplus E^- \quad (dimE^0 < +\infty), \quad (1.1)$$

assim, se $u \in E$, podemos escrever

$$u = u^{+} + u^{0} + u^{-} = u^{+} + v$$

onde $u^{+,0,-} \in E^{+,0,-}$ respectivamente, em que $u^{+,0,-}$ não denotará a parte positiva, nula ou negativa de u e $v \in F$.

Seja agora a esfera unitária definida por

$$S^{+} \equiv S \cap E^{+} = \{ u \in E^{+} : ||u|| = 1 \},\$$

da decomposição de E podemos definir os seguintes espaços

$$E(u) = \mathbb{R}u \oplus F \equiv \mathbb{R}u^{+} \oplus F \quad \text{e} \quad \widehat{E}(u) = \mathbb{R}^{+}u \oplus F \equiv \mathbb{R}^{+}u^{+} \oplus F, \tag{1.2}$$

$$\text{com, } \mathbb{R}^{+} = [0, \infty).$$

Seja $\Phi \in C^1(E,\mathbb{R})$. Vamos fazer algumas suposições sobre Φ :

- (A1) $\Phi(u) = \frac{1}{2}||u^+||^2 \frac{1}{2}||u^-||^2 I(u)$, onde I(0) = 0, $\frac{1}{2}I'(u)u > I(u) > 0$ para todo $u \neq 0$ e I é fracamente semicontínuo inferiormente;
- (A2) Para cada $w \in E \setminus F$, existe um único ponto crítico não trivial $\widehat{m}(w)$ de $\Phi|_{\widehat{E}(w)}$. Além disso, $\widehat{m}(w)$ é o único máximo global de $\Phi|_{\widehat{E}(w)}$
- (A3) Existe $\delta > 0$ tal que $||\widehat{m}(w)^+|| \geq \delta$, para todo $w \in E \setminus F$, e para cada subconjunto compacto $\mathcal{W} \subset E \setminus F$, existe uma constante $C_{\mathcal{W}}$ tal que $||\widehat{m}(w)|| \leq C_{\mathcal{W}}$ para todo $w \in \mathcal{W}$.

Definamos como a variedade de Nehari generalizada o seguinte conjunto \mathcal{M} , dado por:

$$\mathcal{M} = \{u \in E \setminus (E^0 \oplus E^-) : \Phi'(u)u = 0 \quad \text{e} \quad \Phi'(u)v = 0 \text{ para todo } v \in (E^0 \oplus E^-)\}.$$

Para esse momento de definições vamos recordar as definições de sequência (PS) e condição (PS). Para isso, seja X um espaço de Banach e $\Phi: X \to \mathbb{R}$ um funcional de classe C^1 .

Definição 1.1 Dizemos que $(u_n) \subset X$, é uma sequência **Palais-Smale-(PS)**, no nível c, denotada por $(PS)_c$ quando

$$\Phi(u_n) \to c \ e \ \Phi'(u_n) \to 0.$$

Definição 1.2 Dizemos que Φ verifica a condição de (PS), quando toda sequência $(PS)_c$ para $c \in \mathbb{R}$, admite uma subsequência que converge forte em X, isto \acute{e} ,

$$\Phi(u_n) \to c \ e \ \Phi'(u_n) \to 0$$
,

existem $(u_{n_k}) \subset (u_n)$ e $u_0 \in X$ tal que

$$u_{n_k} \to u_0$$
 em X .

Mais à frente no Lema 1.1 item (iii) mostraremos quando a variedade de Nehari generalizada \mathcal{M} , coincide com a variedade de Nehari \mathcal{N} apresentada por Szulkin e Weth em [1].

Observemos que se Φ é C^1 não garantimos que \mathcal{M} é uma C^1 -variedade, pois de modo geral, a variedade de Nehari é uma variedade simples ou seja, apenas C^0 -variedade. Mas contornaremos essa dificuldade quando provarmos a existência de um homeomorfismo m entre S^+ e \mathcal{M} . Teremos aí uma correspondência bijetiva entre os pontos críticos de Φ restrito a S^+ com a \mathcal{M} , e uma vez que $\Phi|_{S^+}$ é C^1 , limitado inferiormente e satisfaz a condição (PS), então $\Phi|_{S^+}$ possui uma infinidade de pares de pontos críticos sobre S^+ , e relacionamos tais pontos críticos de Φ sobre a esfera S^+ , com os que pertencem a variedade quando provarmos que o funcional satisfaz a condição (PS) também na variedade de Nehari generalizada \mathcal{M} .

Apresentaremos neste momento o primeiro Lema desde trabalho o qual será muito usado no decorrer do desenvolvimento do método. É importante frisar que o item (iii) do Lema abaixo diz quando a variedade de Nehari generalizada \mathcal{M} coincide com a variedade de Nehari \mathcal{N} apresentada na introdução. Pois quando $F = \{0\}$, então (A2), (A3) serão equivalentes a (I2), (I3) e $\mathcal{M} = \mathcal{N}$.

Lema 1.1 Suponha $\Phi \in C^1(E,\mathbb{R})$ e as hipóteses (A1) – (A3). Então,

- (i) Se $u \neq 0$ e $\Phi'(u) = 0$ então $\Phi(u) > 0$;
- (ii) Por (A2) segue $\widehat{E}(w) \cap \mathcal{M} = \{\widehat{m}(w)\};$
- (iii) Dado t > 0 temos $\widehat{m}(w) = \widehat{m}(tw)$ e por consequência imediata $F = \{0\}$.

Demonstração: i) Se $u \neq 0$ e $\Phi'(u) = 0$ então

$$\begin{split} \Phi(u) &= \Phi(u) - \frac{1}{2} \Phi'(u) u = \frac{1}{2} ||u^+||^2 - \frac{1}{2} ||u^-||^2 - I(u) - \frac{1}{2} \left[||u^+||^2 - ||u^-||^2 - I'(u) u \right] \\ &= \frac{1}{2} I'(u) u - I(u) > 0, \end{split}$$

onde a ultima desigualdade acima segue da hipótese (A1).

ii) Seja $z \in \mathcal{M} \cap \widehat{E}(w)$, daí $z = tw^+ + v$ e ainda por \mathcal{M}

$$\Phi'(tw^{+} + v)(tw^{+} + v) = 0,$$

pela linearidade

$$t\Phi'(tw^{+} + v)w^{+} + \Phi'(tw^{+} + v)v = 0,$$

logo,

$$\Phi'(tw^+ + v)w^+ = 0.$$

Dessa forma, z é um ponto crítico não trivial de Φ restrito a $\widehat{E}(w)$, Resta estender para todo $\widehat{E}(w)$. Para isso, seja t>0 e $m(w)=sw^++n\in\widehat{E}(w)$ com $n\in F$ ainda teremos,

$$\Phi'(tw^{+} + v)(sw^{+} + n) = s\Phi'(tw^{+} + v)w^{+} + \Phi'(tw^{+} + v)n = 0.$$

Agora sim, pela unicidade em (A2) para Φ restrito à $\widehat{E}(w)$ concluímos $m(w) = z = \widehat{m}(w)$. Mostrando ii).

iii) Este item é direto da definição de $\widehat{E}(w)$. Basta notarmos

$$\widehat{E}(w) = \mathbb{R}^+ w \oplus F \equiv \mathbb{R}^+ w^+ \oplus F = t \mathbb{R}^+ w^+ \oplus t F = \widehat{E}(tw),$$

em particular,

$$\widehat{m}(w) = \widehat{m}(tw),$$

concluindo a demonstração.

Lema 1.2 Seja $\Phi \in C^1(E, \mathbb{R})$ e E um espaço de Hilbert com a decomposição (1.1), então:

- (i) $d(\mathcal{M}, F) > 0$;
- (ii) A variedade de Nehari generalizada \mathcal{M} é fechada.

Demonstração: (i) Primeiramente vamos mostrar que \mathcal{M} está afastada de F. Seja então $\widehat{m}(w) = \widehat{m}(w)^+ + z \in \mathcal{M}$ com $z \in F$, daí segue,

$$\|\widehat{m}(w) - v\| = \|\widehat{m}(w)^{+} + z - v\| = \|\widehat{m}(w)^{+}\|_{E^{+}} + \|z - v\|_{F},$$

passando o ínfimo sobre F na igualdade anterior, temos $d(\mathcal{M}, F) > 0$, pois

$$\inf_{v \in F} ||z - v||_F = d(z, F) = 0 \ e \ por \ (A3) \ ||\widehat{m}(w)^+|| \ge \delta.$$

(ii) Vamos agora mostrar que \mathcal{M} é fechada. Com efeito, é suficiente notar que a variedade pode ser escrita $\mathcal{M} = A \cap B$ com A e B fechados. Para isso, consideremos

$$A = \{\varphi^{-1}(0)\} \quad com \quad \varphi(u) = \Phi'(u)u.$$

A é claramente fechado. Por outro lado precisamos estender para toda \mathcal{M} vamos então definir B olhando para F que será a segunda parte da definição de \mathcal{M} , com

$$B = \bigcap_{v \in F} B_v \quad onde \quad B_v = \left\{ \varphi_v^{-1}(0) \right\}, \quad com \quad \varphi_v(u) = \Phi'(u).v \ \forall \ v \in F.$$

Uma vez que cada B_v é fachado, B é fechado. Portando \mathcal{M} é fechada.

Lema 1.3 Seja $\Phi \in C^1(E,\mathbb{R})$ e E um espaço de Hilbert com a decomposição (1.1), e suponhamos as hipóteses (A1) - (A3) então:

- (i) $t_{\|w\|} = \|w\| tw \ para \ todo \ t > 0;$
- (ii) Se $w \in \mathcal{M}$ então $t_w = 1$ e $v_w = 0$, isto é, $w = \widehat{m}(w)$;
- (iii) $t_{w^+} = t_w \ e \ v_{w^+} = v_w$, para todo $w \in E \setminus F$, ou seja, $\widehat{m}(w) = \widehat{m}(w^+)$.

Demonstração: (i) Desde que $\widehat{m}(tw) = \widehat{m}(w)$, para todo t > 0 e para todo $w \in E \setminus F$, concluímos que, para $t = \frac{1}{\|w\|} > 0$, obtemos

$$t_{\frac{w}{\|w\|}} \left(\frac{w}{\|w\|}\right)^+ + v_{\frac{w}{\|w\|}} = t_w w^+ + v_w.$$

donde

$$t_{\frac{w}{\|w\|}} \frac{w^+}{\|w\|} = t_w w^+.$$

Passando a norma em ambos os membros acima, segue

$$t_{\frac{w}{\|w\|}} = \|w\|.t_w.$$

Mostrando (i).

(ii) É suficiente mostrar que se $w \in \mathcal{M}$ então w é ponto crítico de $\Phi|_{\widehat{E}(w)}$. Com efeito, notemos que

$$w \in \widehat{E}(w),$$

pois

$$w = 1w + 0.$$

Por outro lado, da definição de \mathcal{M} ,

$$\Phi'(w)(tw+v) = t\Phi'(w)w + \Phi'(w)v = 0,$$

para quaisquer t > 0 e $v \in F$. Mostrando que w é ponto crítico de $\Phi|_{\widehat{E}(w)}$, e pelo Lema 1.2 item (ii) sabemos que $\widehat{m}(w)$ é o único ponto critico de $\Phi|_{\widehat{E}(w)}$, assim concluímos $w = \widehat{m}(w)$, provando (ii).

(iii) Agora é suficiente mostrarmos que

$$\widehat{E}(w) = \widehat{E}(w^+) \tag{1.3}$$

Esta última igualdade é uma consequência imediata da definição de $\widehat{E}(w)$. Uma vez que $\widehat{m}(w)$ é o único ponto crítico de $\Phi|_{\widehat{E}(w)}$, concluímos de (1.3) que $\widehat{m}(w) = \widehat{m}(w^+)$.

É importante notarmos também que

$$\widehat{E}(\mathbb{R}^+ w) = \widehat{E}(\mathbb{R}^+ w^+) = \widehat{E}(w) = \widehat{E}(w^+).$$

Seja as aplicações, $\widehat{m}: E \setminus F \to \mathcal{M} \ e \ m: S^+ \to \mathcal{M}, \ com$

$$m = \widehat{m}|_{s^+}$$
 e $\widehat{m}(w) = t_w w^+ + v_w$

Agora já estamos em condições de apresentarmos a Proposição 1.1, talvez não a mais importante deste trabalho, mas a que representa o método. Onde consiste na construção do homeomorfismo entre a esfera unitária S^+ e a variedade de Nehari generalizada \mathcal{M} .

Proposição 1.1 Suponha que Φ satisfaz (A1)-(A3), então:

- (a) a aplicação \widehat{m} é contínua
- (b) a aplicação m é um homeomorfismo sobre a S^+ e \mathcal{M}

Demonstração: (a) Supondo $(w_n) \subset E \setminus F$, $w_n \to w \notin F$. Desde que

$$\widehat{m}(w) = \widehat{m}\left(\frac{w^+}{\|w^+\|}\right),\,$$

assumimos sem perda de generalidade que $w_n \in S^+$. É suficiente mostrar que

$$\widehat{m}(w_n) \longrightarrow \widehat{m}(w)$$

a menos de subsequência. Escrevendo,

$$\widehat{m}(w_n) = s_n w_n + v_n = s_n w_n + v_n^0 + v_n^-.$$
(1.4)

Por (A3), $(\widehat{m}(w_n))$ é limitada, assim passando uma subsequência $s_n \to \overline{s}$ acima vem

$$s_n w_n + v_n^0 + v_n^- \rightharpoonup \overline{s}w + v_*^0 + v_*^-, \qquad v_* = v_*^0 + v_*^-$$

considerando $\widehat{m}(w) = sw + v$, decorre de (A2) que

$$\Phi(\widehat{m}(w_n)) \ge \Phi(sw_n + v) \to \Phi(sw + v) = \Phi(\widehat{m}(w)); \tag{1.5}$$

e pela semi-continuidade inferior fraca da norma e de I, e usando o fato de $||w_n|| = 1$, segue

$$\Phi(\widehat{m}(w)) \leq \lim_{n \to \infty} \Phi(\widehat{m}(w_n)) = \lim_{n \to \infty} \left(\frac{1}{2} s_n^2 - \frac{1}{2} \|v_n^-\|^2 - I(\widehat{m}(w_n)) \right)
\leq \frac{1}{2} \overline{s}^2 - \frac{1}{2} \|v_*^-\|^2 - I(\overline{s}w + v_*)
\leq \Phi(\widehat{m}(w))
= \frac{1}{2} s^2 - \frac{1}{2} \|v^-\|^2 - I(sw + v).$$
(1.6)

Combinando (1.5) com (1.6) temos

$$\Phi(\widehat{m}(w)) \le \lim_{n \to \infty} \Phi(\widehat{m}(w_n)) \le \Phi(\widehat{m}(w)),$$

no que segue,

$$\lim_{n \to \infty} \Phi(\widehat{m}(w_n)) = \Phi(\widehat{m}(w)). \tag{1.7}$$

Com isso já temos a continuidade de \widehat{m} pois, devido (A2), $\widehat{m}(w)$ é único, daí $\overline{s} = s$ e $v_* = v$, então $s_n \to s$, e $v_n^- \to v^-$ e desde que dim $E^0 < \infty$ temos $v_n^0 \to v^0$. Observe que se fosse $v_n \to v^-$ consequentemente $\Phi(\widehat{m}(w_n) \to \Phi(\widehat{m}(w))$, contradizendo (1.7).

(b) Esta parte é uma consequência direta do lema anterior. Queremos mostrar que $m = \widehat{m}|_{S^+}$ e $m^{-1} : \mathcal{M} \to S^+$ definida por

$$u \longmapsto \frac{u^+}{\|u^+\|}$$

são inversas uma da outra. É claro que

$$m^{-1}(m(u)) = \frac{m(u)^+}{\|m(u)^+\|} = \frac{t_u u}{\|t_u u\|} = \frac{u}{\|u\|} = u,$$

pois $u \in S^+$, logo ||u|| = 1 e $u = u^+$. Vamos agora mostrar que $m(m^{-1}(w)) = w$ para todo $w \in \mathcal{M}$. Aqui vamos fazer uso do lema anterior itens (ii) e (iii) e o fato de que $\widehat{m}(w) = \widehat{m}(tw)$ para t > 0. Com efeito,

$$m(m^{-1}(w)) = \widehat{m}\left(\frac{w^+}{\|w^+\|}\right) = \widehat{m}(w^+) = \widehat{m}(w) = w$$

Concluindo a demonstração.

Seja agora as seguintes aplicações, $\widehat{\Psi}: E^+ \setminus \{0\} \to \mathbb{R} \ e \ \Psi: S \to \mathbb{R} \ dadas \ por$

$$\Psi = \widehat{\Psi}|_{S^+} \quad e \quad \widehat{\Psi}(w) := \Phi(\widehat{m}(w))$$

Proposição 1.2 Suponha que Φ satisfaz (A1)-(A3). Então, $\widehat{\Psi} \in C^1(E^+ \setminus \{0\}, \mathbb{R})$ com

$$\widehat{\Psi}'(w)z = \frac{\|\widehat{m}(w)^+\|}{\|w\|} \Phi'(\widehat{m}(w))z \quad para \ todo \ w, z \in E^+, \ w \neq 0.$$

Demonstração: Seja $w E^+ \setminus \{0\}, z \in E^+ \ e \ considerando \ \widehat{m}(w) = s_w w + v_w, \ e v_w \in F$. Agora temos

$$\widehat{\Psi}(w+tz) - \widehat{\Psi}(w) = \Phi(s_{w+tz}(w+tz) + v_{w+tz}) - \Phi(s_w w + v_w)$$

$$\leq \Phi(s_{w+tz}(w+tz) + v_{w+tz}) - \Phi(s_{w+tz}w + v_{w+tz})$$

$$= \Phi'(s_{w+tz}(w+\tau_t tz) + v_{w+tz}) s_{w+tz} tz$$

para todo |t| suficientemente pequeno e $\tau_t \in (0,1)$. Note agora,

$$\widehat{\Psi}(w+tz) - \widehat{\Psi}(w) \ge \Phi(s_w(w+tz) + v_{w+tz}) - \Phi(s_w w + v_w)$$
$$= \Phi'(s_w(w+\eta_t tz) + v_{w+tz}) s_w tz$$

 $com \eta_t \in (0,1), dai$

$$\Phi'(s_w(w+\eta_t tz)+v_{w+tz})s_w tz \le \widehat{\Psi}(w+tz)-\widehat{\Psi}(w) \le \Phi'(s_{w+tz}(w+\tau_t tz)+v_{w+tz})s_{w+tz}tz;$$

pela continuidade de s_w e por Φ ser C^1 , temos

$$\lim_{t \to 0} \frac{\widehat{\Psi}(w + tz) - \widehat{\Psi}(w)}{t} = s_w \Phi'(s_w w + v_w) z = \frac{\|\widehat{m}(w)^+\|}{\|w\|} \Phi'(\widehat{m}(w)) z.$$

Como consequência disto temos o seguinte corolário no qual já começamos a preparar os conceitos necessários para a conclusão do nosso método estudado quando provarmos a Proposição 1.3 mais à frente, garantindo que o funcional Φ sobe algumas hipóteses necessárias satisfaz a condição Palais-Smale-(PS) sobre a variedade de Nehari generalizada \mathcal{M} .

Corolário 1.1 Supondo $\Phi \in C^1(E,\mathbb{R})$ e satisfazendo (A1)-(A3). Então:

(a) $\Psi \in C^1(S^+, \mathbb{R})$ e

$$\Psi'(w)z = \|\widehat{m}(w)^+\|\Phi(m(w))z \text{ para todo } z \in T_w(S^+).$$

- (b) Se (w_n) é uma sequencia Palais-Smale-(PS) para Ψ , então $m((w_n))$ é uma sequência (PS) para Φ . Se $(u_n) \in \mathcal{M}$ é uma sequência (PS) limitada para Φ , então $m^{-1}(u_n)$ é (PS) para Ψ .
- (c) Se w é um ponto crítico para de Ψ se, e somente se, m(w) é um ponto crítico não-trivial de Φ. Consequentemente os valores de Ψ e Φ coincidem e inf_{S+} Ψ = inf_M Φ.
- (d) Se Φ é par, então Ψ também.

Demonstração: (a) Se $w \in S^+$, então ||w|| = 1 e usando a Proposição 1.2, (a) é verificado.

(b) Primeiramente notemos que pela definição de Ψ segue que $\Psi(w_n)$ é limitada se, e somente se, $\Phi(m(w))$ for limitada. Agora fazendo a decomposição $E = T_w(S^+) \oplus E(w)$ para todo $w \in S^+$ e escrevendo u = m(w) segue,

$$\|\Psi'(w)\| = \sup_{\substack{z \in T_w(S^+) \\ \|z\|=1}} \Psi'(w)z = \|u^+\| \sup_{\substack{z \in T_w(S^+) \\ \|z\|=1}} \Phi'(u)z = \|u^+\| \|\Phi'(u)\|_*, \tag{1.8}$$

a conclusão de (b) é direto da igualdade (1.8) acima, onde a ultima igualdade na mesma segue do fato de

$$\|\Phi'(u)\|_* = \sup_{\substack{z \in T_w(S^+) \\ \|z\| = 1}} \Phi'(u)z + \sup_{\substack{v \in E(w) \\ \|v\| = 1}} \Phi'(u)v,$$

pois $\Phi'(u)v = 0$ para todo $v \in E(w)$ e por E(w). Com efeito, dado $v \in \widehat{E}(w)$ segue,

$$v = sw + v'$$
 com $w \in S^+$, $s \in \mathbb{R}$ $e \ v' \in F$,

com isso,

$$\Phi'(u)v = \Phi'(u)(sw + v') = s\Phi'(u)w + \Phi'(u)v'$$

$$= s\Phi'(u)m^{-1}(m(w))$$

$$= \frac{s}{\|m(w)^+\|}\Phi'(u).\widehat{m}(w) = 0.$$

Desde que $\|u^+\| \ge \delta > 0$ para todo $u \in \mathcal{M}$ concluímos a prova.

- (c) é direto da igualdade (1.8).
- (d) Se Φ é par, então Ψ será, pois

$$\Psi(w) := \Phi(sw) = \Phi(-sw) := \Psi(-w).$$

Concluindo a demonstração.

Consequência imediata deste corolário é o próximo lema que garante que o ínfimo de Φ sobre $\mathcal M$ tem a seguinte caracterização:

Lema 1.4 Seja $\Phi \in C^1(E,\mathbb{R})$ e satisfazendo (A1) – (A3) então:

$$c := \inf_{u \in \mathcal{M}} \Phi(u) = \inf_{w \in E \backslash F} \max_{u \in \widehat{E}(w)} \Phi(u) = \inf_{w \in S^+} \max_{u \in \widehat{E}(w)} \Phi(u).$$

Demonstração: Desde que $\widehat{m}(w) = \widehat{m}\left(\frac{w}{\|w\|}\right)$ para todo $w \in E \setminus F$ temos,

$$\inf_{w \in E \setminus F} \max_{u \in \widehat{E}(w)} \Phi(u) = \inf_{w \in S^+} \max_{u \in \widehat{E}(w)} \Phi(u). \tag{1.9}$$

Da definição de Ψ , seque

$$\inf_{w \in S^+} \Psi(u) = \inf_{w \in S^+} \max_{u \in \widehat{E}(w)} \Phi(u), \tag{1.10}$$

combinando (1.9) e (1.10) e pelo corolário anterior item c), temos

$$\inf_{u \in \mathcal{M}} \Phi(u) = \inf_{w \in E \backslash F} \max_{u \in \widehat{E}(w)} \Phi(u) = \inf_{w \in S^+} \max_{u \in \widehat{E}(w)} \Phi(u)$$

Proposição 1.3 Supondo que Φ satisfaz (A1), (A2) e também

- (i) I'(u) = o(||u||) quando $u \to 0$;
- (ii) $I(su)/s^2 \to \infty$ uniformemente para u em um subconjunto fracamente compacto de $E \setminus \{0\}$ quando $s \to \infty$;
- (iii) I' é completamente contínua.

Então Φ satisfaz a condição (PS) na M.

Demonstração: Seja $(u_n) \subset \mathcal{M}$ uma sequência (PS). Dessa forma

$$\Phi(u_n) \le d,$$

para algum d > 0 e

$$\Phi'(u_n) \longrightarrow 0.$$

 $Se(u_n)$ é ilimitada, definamos

$$v_n := \frac{u_n}{\|u_n\|}.$$

Passando para uma subsequência, podemos assumir

$$||u_n|| \longrightarrow \infty \quad e \quad v_n \rightharpoonup v,$$

pois S é fracamente compacta. Segue-se de (ii) que se $v \neq 0$, temos

$$0 \le \frac{\Phi(u_n)}{\|u_n\|^2} = \frac{1}{2} \|v_n^+\|^2 - \frac{1}{2} \|v_n^-\|^2 - \frac{I(\|u_n\|v_n)}{\|u_n\|^2}$$
 (1.11)

com a parte direita acima indo para $-\infty$. Consequentemente v=0. Por (1.11),

$$\frac{1}{2} \|v_n^+\|^2 \ge \frac{1}{2} \|v_n^-\|^2 + \frac{I(\|u_n\|v_n)}{\|u_n\|^2}$$

e como I > 0, vem

$$||v_n^+|| \ge ||v_n^-||.$$

Assim, se $v_n^+ \to 0$ então $v_n^- \to 0$, e portanto,

$$||v_n^0||^2 = 1 - ||v_n^+||^2 - ||v_n^-||^2 \longrightarrow 1.$$

 $Como \ dim E^0 < \infty \ então \ v_n^0 \rightarrow v^0 \neq 0 \ então \ v \neq 0 \ contradição. \ Portanto$

$$v_n^+ \nrightarrow 0$$

e assim,

$$||v_n^+|| \ge \alpha \quad \forall \ n \ e \ algum \ \alpha > 0,$$

a menos de subsequência. Completamos a prova da limitação de u_n , observando que

$$d \ge \Phi(u_n) = \Phi(s_{v_n^+} v_n^+) \ge \Phi(s v_n^+) \ge \frac{1}{2} \alpha^2 s^2 - I(s v_n^+) \to \frac{1}{2} \alpha^2 s^2, \tag{1.12}$$

para todo s > 0, contradição pois para $s > (2d)^{\frac{1}{2}}/\alpha$ (1.12) não é valida. Portanto (u_n) é limitada e

$$\Phi'(u_n) = u_n^+ - u_n^- - I'(u_n) \to 0.$$

Uma vez que I' é completamente contínuo e dim $E^0 < \infty$, a convergência acima está bem definida e (u_n) possui uma subsequencia convergente.

Faremos aqui o Teorema principal da teoria do método estudado, no qual garantirá sobe certas hipérteses uma infinidades de pares de soluções para algumas aplicações abordas nos próximos capítulos. Para isso vamos apresentar a seguinte definição

Definição 1.3 Solução Ground State. Defina,

$$c := \inf_{u \in \mathcal{M}} \Phi(u).$$

Seja $\Phi \in C^1(E,R)$. Um ponto crítico $u \neq 0$ de Φ ; $\Phi(u) = c$ é chamado de ponto crítico de menor energia, ou também de Solução **Ground State**.

Teorema 1.1 Supondo que Φ satisfaz (A1), (A2) e

- (i) I'(u) = o(||u||) quando $u \to 0$;
- (ii) $I(su)/s^2 \to \infty$ uniformemente para u em um subconjunto fracamente compacto de $E \setminus \{0\}$ quando $s \to \infty$;
- (iii) I' é completamente contínua.

Então a equação $\Phi'(u) = 0$ tem tem uma solução **ground state**. Além disso, se I for par, então está equação tem infinitos pares de soluções.

Demonstração: Vamos mostrar que (A3) é satisfeita. Se não acontecesse, existiria uma sequência $\delta_n = 1/n$ e $w_n \in S_{\rho}(0) \cap E^+$ tais que $s_n < 1/n$, com $\widehat{m}(w) = sw$ daí

$$0 = \Phi'(s_n(w_n)) = (s_n) \|(w_n)^+\|^2 - I'(s_n(w_n)^+) w_n = s_n \rho^2 - I'(s_n(w_n)^+) w_n.$$

Assim,

$$\rho^2 = \frac{I'(s_n(w_n)^+)w_n}{s_n},$$

dessa forma, como $\rho = ||w_n||$, seque

$$\rho = \frac{I'(s_n(w_n)^+)w_n}{s_n\|w_n\|} \le \frac{\|I'(s_n(w_n)^+)w_n\|}{s_n\|w_n\|} = 1 \tag{1.13}$$

contradizendo (i). Com isso deve existir $\delta > 0$ tal que $\|\widehat{m}(w)^+\| \geq \delta$ para todo $w \in E \setminus F$. Como E é Hilbert, logo reflexivo, S^+ é fracamente compacta. Por outro lado se existisse uma $w_n \in \mathcal{W} \subset S^+$ tal que $\|\widehat{m}(w_n)\| > n$ para todo n natural e por sua vez (r_n) ilimitada. Teríamos novamente (1.12), temos ainda por (A1)

$$\frac{I(r_n w_n)}{r_n^2} \le \frac{I'(r_n (w_n)^+) w_n}{r_n^2} \le \frac{I'(r_n (w_n)^+) w_n}{r_n} = \rho^2.$$

O que contradiz (ii). Portanto (A3) é satisfeita.

Desde que $\widehat{m}(w) = \widehat{m}(w^+/\|w^+\|)$ para todo $E \setminus F$, isto também é verdade para o compacto W. Também notemos $c := \inf_{\mathcal{M}} \Phi \ge \eta > 0$, para algum $\eta > 0$, pois de forma natural $\Phi(w) \ge \eta$, com $w \in S_{\rho}(0) \cap E^+$.

Pela Proposição 1.3, e seja (w_n) uma sequência (PS), com $u_n = m(w_n) \in \mathcal{M}$ então pelo Corolário 1.1 (u_n) é (PS) para Φ , como Φ satisfaz a condição (PS) em \mathcal{M} temos $u_n \to u$ na variedade a menos de subsequência, com isso, $w_n \to m^{-1}(u)$, então Ψ satisfaz a condição (PS), daí $\Psi'(w_n) \to 0$ e pela condição (PS) $w_n \to w$, depois de passar uma subsequência, logo w é minimizador de Ψ ou seja,

$$\Psi(w) = \Phi(m(w)) = \Phi(u) = \inf_{w \in S^+} \Psi(w) = \inf_{u \in \mathcal{M}} \Phi(u) \ e \ \Psi'(w) = 0,$$

Dessa forma, u é solução ground state da equação $\Phi'(u) = 0$, e pelo Corolário 1.1 m(w) = u é crítico não-trivial de Φ .

Agora, se I é Par por (A1), Φ também é, pelo Corolário 1.1 novamente, Ψ também será.

Novamente pelo Corolário 1.1, $0 < \inf_{S^+} \Psi = \inf_{\mathcal{M}} \Phi$, consequentemente Ψ é limitada inferiormente. Em suma, pela limitação inferior sobre S^+ e pela condição (PS) Ψ tem infinitos pares de pontos críticos, ver Teorema A.1 e novamente pelo Corolário 1.1 temos infinitos pares de soluções não triviais.

Concluímos aqui o método da variedade de Nehari Generalizada, e as ferramentas fundamentais para iniciarmos nossas aplicações.

Capítulo 2

Problema de autovalor

Neste capitulo estamos interessados em investigar o seguinte problema de autovalor

$$\begin{cases}
-\Delta u - \lambda u = f(x, u), & x \in \Omega \\
u = 0, & x \in \partial\Omega,
\end{cases}$$
(2.1)

com $\Omega \subset \mathbb{R}^N$ um domínio limitado, e $\lambda \geq \lambda_1$, λ_1 denota o primeiro autovalor do operador Laplaciano com condição de fronteira Dirichlet e $f \in C(\Omega \times \mathbb{R}, \mathbb{R})$ satisfazendo:

(f₁) Com a > 0 e $2 < q < 2^*$, com $2^* := 2N/(N-2)$ se $N \ge 3$ e $2^* := \infty$ caso contrário, tais que

$$|f(x,u)| \le a (1+|u|^{q-1}),$$

- (f_2) f(x,u) = o(u) uniformemente em x quando $u \to 0$,
- (f_3) $u \to f(x,u)/|u|$ é estritamente crescente,
- (f_4) $F(x,u)/u^2 \to \infty$ uniformemente em x quando $|u| \to \infty$.

Para aplicarmos o método da variedade de Nehari generalizada, vamos definir primeiramente algumas notações, $E=H^1_0(\Omega)$ com

$$E = E^+ \oplus E^0 \oplus E^-$$

a decomposição ortogonal correspondente ao espectro de $\Delta - \lambda$ em E. Mais precisamente, denotamos os autovalores de $-\Delta$ por $\lambda_1, \lambda_2, \ldots$ e um conjunto ortogonal em E correspondente por cada autofunção e_i do autovalor λ_i que gera o subespaço ortogonal E^- , e de maneira análoga para o subespaço E^0 . Para isso, supondo $\lambda_k < \lambda = \lambda_{k+1} = \ldots = \lambda_m < \lambda_{m_{m+1}}$, onde $1 \leq k < m$. Então

$$E^- = span\{e_1, ..., e_k\}$$
 e $E^0 = span\{e_{k+1}, ..., e_m\}.$

Também admitimos o caso k=0 e $k=m\geq 1$ que correspondem respectivamente a $E^-=\{0\}$ e $E^0=\{0\}$. Tendo em vista esta decomposição cada elemento $u\in E$, pode ser escrito como $u=u^++u^0+u^-\in E^+\oplus E^0\oplus E^-$. Desta forma a norma de u no espaço E será

$$\int_{\Omega} (|\nabla u|^2 - \lambda u^2) \, dx = ||u^+||^2 - ||u^-||^2.$$

Então o funcional associado a (2.1) é

$$\Phi(u) = \frac{1}{2} \|u^{+}\| - \frac{1}{2} \|u^{-}\|^{2} - I(u), \tag{2.2}$$

com,

$$I(u) = \int_{\Omega} F(x,u)dx$$
 e $F(x,u) := \int_{0}^{u} f(x,s)ds$

Para uso nessa aplicação vamos precisar de alguns resultados entre eles, o seguinte lema:

Lema 2.1 Se f satisfaz (f_2) e (f_3) e Ω um conjunto qualquer, então F(x,u) > 0 e $\frac{1}{2}f(x,u)u > F(x,u)$ para todo $u \neq 0$.

Demonstração: Para ver que $F \ge 0$ notemos que (f_3) garante que f(x,u)/|u| é sempre crescente para $u \ne 0$. Por (f_2) temos

$$g(x, u) = \lim_{u \to 0} \frac{f(x, u)}{|u|} = 0 \quad \forall x \in \Omega,$$

o que implica que podemos definir g(x,0) = 0. Assim (f_3) implica que f(x,u) deve ser negativa para u < 0 e positiva para u > 0. Portanto o integrando da

definição de F é positivo quando u>0, e negativo se u<0, mostrando que $F\geq 0$. Por outro lado, temos

$$F(x,u) = \int_0^u f(x,s)ds = \int_0^u \frac{f(x,s)}{s}sds$$

e pela hipótese (f_3) , onde garante que f(x,u)/|u| é crescente em [0,u], temos

$$\max_{s \in [0,u]} \frac{f(x,s)}{s} = \frac{f(x,u)}{u},$$

dai

$$\int_{0}^{u} \frac{f(x,s)}{s} s ds < \int_{0}^{u} \frac{f(x,u)}{u} s ds = \frac{f(x,u)}{u} \int_{0}^{u} s ds = \frac{1}{2} f(x,u) u.$$

Mostrando o resultado.

Lema 2.2 Supondo que $\lambda \geq \lambda_1$, Ω um domínio qualquer e f satisfazendo $(f_1) - (f_4)$ e seja u, s, v números reais, tais que $s \geq -1$ e seja, $w := su + v \neq 0$. Então

$$f(x,u)\left[s(\frac{1}{2}+1)u + (1+s)v\right] + F(x,u) - F(x,u+w) < 0$$

para todo $x \in \Omega$.

Demonstração: Fixemos $x \in \Omega$ e $u, v \in \mathbb{R}$. Para $s \ge -1$, consideramos z = z(s) := (1+s)u + v. Sendo assim z = u + w. Além disso definiremos

$$g(s) = f(x, u) \left[s(\frac{1}{2} + 1)u + (1 + s)v \right] + F(x, u) - F(x, z).$$

Devemos mostrar que g(s) < 0 sempre que $u \neq z$. Para isso devemos considerar alguns casos

i) Supondo u = 0. Então $z \neq 0$ e portanto Pelo Lema 2.1, temos

$$q(s) = -F(x, z) < 0.$$

ii) Assumindo $u \neq 0$. Se $uz \leq 0$, segue, de v = z - (1 - s)u, e substituindo em v na definição de g acima que

$$g(s) = f(x,u) \left[\left(\frac{s^2}{2} + s \right) u + (s+1)(z - (s+1)u) \right] + F(x,u) - F(x,z),$$

pelo Lema 2.1, uma vez que $\frac{1}{2}f(x,u)u > F(x,u)$, segue

$$g(s) < f(x,u) \left[\left(\frac{s^2}{2} + s \right) u + (s+1)(z - (s+1)u) \right] + \frac{1}{2} f(x,u)u - F(x,z)$$

e por consequência do Lema 2.1 que $f(x,u)z \le 0$ quando $uz \le 0$, pois $\frac{1}{2}f(x,u)u > F(x,u) > 0$ temos

$$g(s) = \frac{1}{2}(s^2 + s + 1)f(x, u)u + (s + 1)f(x, u)z - F(x, z) \le 0.$$

Portanto g(s) < 0 também para este caso.

iii) Por fim, suponha agora, uz > 0. Observe que

$$g(-1) = -\frac{1}{2}f(x,u)u + F(x,u) - F(x,v),$$

e por consequência do Lema 2.1, vem

$$-\frac{1}{2}f(x,u)u + F(x,u) < 0,$$

e com isso,

$$g(-1) = -\frac{1}{2}f(x,u)u + F(x,u) - F(x,v) < -F(x,v) \le 0 \ e \ \lim_{s \to \infty} g(s) = -\infty.$$

Além disso, calculando a derivada da função real g, temos

$$g'(s) = \lim_{h \to 0} \frac{g(s+h) - g(s)}{h} = uz \left(\frac{f(x,u)}{u} - \frac{f(x,z)}{z} \right). \tag{2.3}$$

Suponha que g atinja o máximo em $[-1, \infty)$ em algum s com $g(s) \ge 0$. Então g'(s) = 0 e u = z por (2.3), e por (f_3)

$$g(s) = -\frac{1}{2}s^2 f(x, u)u \le 0.$$

Segue que g(s) pode ser 0 se u=z ou seja, w=0, mas deve ser negativo caso contrário. Concluindo a demonstração.

A proposição que apresentaremos a seguir garantirá que o funcional em (3) satisfaz a condição (A2). A prova desse fato utilizará o Lema 2.2.

Proposição 2.1 Supondo que f satisfaz $(f_1) - (f_4)$. Então

- (i) $\widehat{E}(w) \cap \mathcal{M} \neq \emptyset$ para cada $w \in E \setminus (E^0 \oplus E^-) \equiv E \setminus F$.
- (ii) Se $u \in \mathcal{M}$, então

$$\Phi(u+w) < \Phi(u)$$
 sempre que $u+w \in \widehat{E}(u), w \neq 0$.

Consequentemente u é o único máximo global de $\Phi|_{\widehat{E}(u)}$

Demonstração: (i) Seja, $w \in E \setminus F$. Desde que pelo Lema 1.1 item iii), que $\widehat{E}(w) = \widehat{E}(w^+/\|w^+\|)$, sendo assim podemos supor sem perda de generalidade que $w \in S^+$. Afirmamos que $\Phi \leq 0$ em $\widehat{E}(w) \setminus B_R(0)$, desde que R seja suficientemente grande. Se não fosse assim, encontraríamos uma sequência (u_n) tal que

$$||u_n|| \to \infty$$
 $e \Phi(u_n) \ge 0.$

Considerando $v_n := u_n/\|u_n\|$ e como a esfera é fracamente compacta, temos $v_n \rightharpoonup v$ em $E \setminus F$ e usando o mesmo argumento por contradição como em (1.11), agora para o funcional em (3), segue v = 0. Uma vez que $v_n^+ \in E^+$, podemos escrever $v_n^+ = s_n w$ com $w \in S^+$, assim

$$||v_n^+|| = ||s_n w|| = s_n,$$

limitada, e longe de 0. No entanto,

$$v_n^+ \to sw, \ s > 0.$$

Contradição. Por (i) do Lema 2.1 e por

$$\Phi(sw) = \frac{1}{2}s^2 + o(s^2) \quad quando \quad s \to 0,$$

seque que,

$$0 < \sup_{w \in \widehat{E}(w)} \Phi < \infty.$$

Uma vez que Φ é fracamente semicontínuo superiormente em $\widehat{E}(w)$ e $\Phi \leq 0$ em $\widehat{E}(w) \cap F$, o supremo é atingido em algum ponto u_0 tal que $u_0^+ \neq 0$. Então u_0 é um ponto crítico de $\Phi|_{\widehat{E}(w)}$, consequentemente $u_0 \in \mathcal{M}$.

(ii) Seja a forma bilinear,

$$B(v_1, v_2) := \int_{\Omega} (\nabla v_1 \nabla v_2 - \lambda v_1 v_2) dx \quad v_1, v_2 \in E.$$

Para $u \in \mathcal{M}$, seja $u + w \in \widehat{E}(u)$. Então u + w = (1 + s)u + v onde $s \ge -1$ e $v = v^0 + v^- \in F$. Notemos pela definição do funcional (2.3) que

$$\Phi(u+w) - \Phi(u) = \frac{1}{2} [B(u+w, u+w) - B(u, u)] + \int_{\Omega} (F(x, u) - F(x, u+w)) dx$$
$$= \frac{1}{2} [B((1+s)u + v, (1+s)u + v) - B(u, u)] + \int_{\Omega} (F(x, u) - F(x, u+w)) dx$$

e por propriedade da bilinear, seque

$$\begin{split} \Phi(u+w) - \Phi(u) &= \frac{1}{2} \left([(1+s)^2 - 1] B(u,u) + 2(1+s) B(u,v) + B(v,v) \right) \\ &+ \int_{\Omega} (F(x,u) - F(x,u+w)) dx \\ &= -\frac{\|v^-\|^2}{2} + B(u,s(\frac{s}{2}+1)u + (1+s)v) + \int_{\Omega} (F(x,u) - F(x,u+w)) dx \\ &= -\frac{\|v^-\|^2}{2} + \int_{\Omega} (f(x,u)) \left[s(\frac{s}{2}+1)u + (1+s)v \right] + \int_{\Omega} (F(x,u) - F(x,u+w)) dx \\ &onde \ usamos \ o \ fato \ de \ que \ z := s(\frac{s}{2}+1)u + (1+s)v \in E(u) \ e \ ainda, \end{split}$$

$$0 = \Phi'(u)z = B(u, z) - \int_{\Omega} f(x, u)z dx.$$

Uma vez que w é diferente de zero em um conjunto de medida positiva a ultima integral é negativa de acordo com o Lema 2.2. Assim,

$$\Phi(u+w) < \Phi(u).$$

Estamos prontos para apresentar o principal resultado deste capítulo, o qual vamos aplicar o método da variedade de Nehari generalizada, para isso precisamos mostrar que o funcional associado ao problema em (2.1), verifica as condições (A1) – (A3) dadas no capitulo 1, da variedade de Nehari generalizada, e mostrar também as hipóteses do Teorema 1.1, apresentado no capítulo 1, em que é o resultado fundamental do método.

Teorema 2.1 Supondo que $\lambda \geq \lambda_1$, e f satisfazendo $(f_1) - (f_4)$. Então o problema em (2.1) possui uma solução ground state. Além disso, se f for impar, então o problema dado em (2.1) tem uma infinidade de pares de soluções.

Demonstração: Vamos primeiramente mostrar que a hipótese (A1) é satisfeita, uma vez que o funcional Φ pode ser escrito como em (3), resta mostrar que I é fracamente contínuo para a conclusão da verificação de (A1). Para isso, suponhamos que $u_n \rightharpoonup u$ em $H_0^1(\Omega)$, os teoremas de imersão de Sobolev garantem que $H_0^1(\Omega) \hookrightarrow L^q(\Omega)$ continuamente, assim $u_n \to u$ em $L^q(\Omega)$. Dessa forma, fazendo uso de (f_1) e quando $n \to \infty$, temos

$$|F(x,u) - F(x,u_n)| \le \left| \int_{u_n}^u f(x,s) ds \right| \le \left| \int_{u_n}^u a(1+|s|^{q-1}) ds \right|$$

isto \acute{e} ,

$$|F(x,u) - F(x,u_n)| \le a\left(|u| - |u_n| + \frac{|u|^q}{q} - \frac{|u_n|^q}{q}\right) \to 0.$$

O que implica

$$I(u) - I(u_n) = \int_{\Omega} (F(x, u) - F(x, u_n)) dx \to 0 \quad quando \quad n \to \infty.$$

Fazendo uso do Lema 2.1, garantimos que a condição (A1) é valida. Vamos mostrar que o item (i) do Teorema (1.1) é valido. Decorre diretamente das desigualdades de Hölder e Poincaré, basta notar que,

$$|I'(u)v| = \left| \int_{\Omega} f(x,u)v dx \right| \int_{\Omega} |f(x,u)||v| dx \le c_p ||u|| ||v||,$$

isto é

$$||I'(u)|| \le c||u||.$$

Mostrando o item (i) do Teorema (1.1). Para verificarmos o item (ii) do do Teorema (1.1), basta notarmos que

$$\frac{I(s_n u_n)}{s_n^2} = \int_{\Omega} \frac{F(x, s_n u_n) u_n^2}{(s_n u_n)^2} dx \to \infty,$$

para um subconjunto fracamente compacto $W \ni (u_n)$. Para isso, podemos supor a menos de subsequencia, $u_n \rightharpoonup u$ em $E \setminus \{0\}$ e $u_n(x) \rightarrow u(x)$ q.t.p, definindo h_j para os pontos em que $u(x) \neq 0$ como

$$h_j(x) := \frac{F(x, s_n u_j) u_j^2}{(s_n u_j)^2} = \frac{F(x, s_n u_j)}{s_n^2},$$

em que é contínua, logo mensurável e positiva, devido $F \geq 0$ pelo Lema 2.1. Do lema de Fatou, temos

$$\int_{\Omega} \liminf h_j dx \le \int_{\Omega} h_j dx \quad \forall \ j$$

e em particular,

$$\int_{\Omega} \frac{F(x, s_n u)u^2}{(s_n u)^2} dx \le \int_{\Omega} \frac{F(x, s_n u_n)u_n^2}{(s_n u_n)^2},$$

e por (f_4) , a integral da parte esquerda acima tende para o ∞ quando $n \to \infty$. Mostrando que é satisfeito o item (ii) do Teorema (1.1). Vamos então verificar que também é satisfeito o item (iii) do Teorema (1.1). Novamente pelas designaldades de Hölder e Paincaré, vem

$$|[I'(u_n) - I(u)]v| = \left| \int_{\Omega} (f(x, u_n)v - f(x, u)v) dx \right|$$

$$\leq \int_{\Omega} |f(x, u_n) - f(x, u)||v|$$

$$\leq c_p ||f(x, u_n) - f(x, u)||_{L^{\frac{p}{p-1}}} ||v||$$

como $||f(x,u_n)-f(x,u)||_{L^{\frac{p}{p-1}}} \to 0$, o item (iii) está verificado.

Por fim, a condição (A2) é valida pela Proposição (2.1), e (A3) na demonstração do Teorema 1.1. Em suma, fazendo uso do Teorema 1.1, juntamente com o Teorema A.2, e o resultado está provado.

Capítulo 3

Um problema do tipo Schrödinger

Vamos começar considerando o problema:

$$\begin{cases}
-\Delta u + V(x)u = f(x, u), & x \in \mathbb{R}^N \\
u(x) \to 0, & |x| \to \infty.
\end{cases}$$
(3.1)

Conhecido como problema de Schrödinger. Supondo $V \in C(\mathbb{R}^N, \mathbb{R}), f \in C(\mathbb{R}^N \times \mathbb{R}, \mathbb{R})$ satisfazendo

(f₁) Com a > 0 e $2 < q < 2^*$, com $2^* := 2N/(N-2)$ se $N \ge 3$ e $2^* := \infty$ caso contrário, tais que

$$|f(x,u)| \le a (1+|u|^{q-1}),$$

- (f₂) V, f são 1-periódicas em $x_1, ..., x_N, 0 \in \sigma(-\Delta+V)$ e $\sigma(-\Delta+V) \cap (-\infty, 0) \neq \emptyset$,
- (f_3) f(x,u) = o(u) uniformemente em x quando $u \to 0$,
- (f_4) $u \to f(x,u)/|u|$ é estritamente crescente,
- (f_5) $F(x,u)/u^2 \to \infty$ uniformemente em x quando $|x| \to \infty$,

Com o funcional associado dado por

$$\Phi(u) := \frac{1}{2} \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx - \int_{\mathbb{R}^N} F(x, u) dx.$$
 (3.2)

Estamos com um problema no \mathbb{R}^N , em vez do Ω limitado como foi visto no problema em (2.1). Para o funcional em (3.2), a proposição (2.1) ainda é valida basta fazer as alterações seguintes. A diferença aqui é que a integração é no \mathbb{R}^N em vez de Ω , e na forma bilinear $B(v_1, v_2)$ substituir $-\lambda v_1 v_2$ por $V(x)v_1v_2$. Notemos ainda que apesar de que uma das hipóteses do Teorema 2.1 ser dim $E^- < \infty$, este fato não foi usado na demonstração da Proposição 2.1, assim podemos fazer uso da mesma. Feito isso, resta colocar o funcional em (3.2) como em (A1), que será feito através do Lema (3.1) para assim resolvermos o Teorema 3.1 via minimização juntamente com Lema A.1 de P.L Lions'. Em [12] foi mostrado que se f é impar em u e temos a condição de Ambrosetti-Rabinowitz, então o problema não linear de Schrödinger tem uma infinidade de soluções geometricamente distintas, no entanto aqui vamos apenas provar a existência de uma solução de estado fundamental via minimização em \mathcal{M} .

Lema 3.1 Supondo $(f_1) - (f_5)$ e definindo a norma em E como

$$||u||^2 := \int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx.$$

 $Ent \tilde{a}o$

$$||u^+||^2 - ||u^-||^2 = \int_{\mathbb{D}^N} (|\nabla u|^2 + V(x)u^2) dx.$$

Demonstração: Considerando $u^+ = \frac{u+v}{2}$ e $u^- = \frac{u-v}{2}$ tal que $v \in E$. Notemos $u = u^+ + u^- \in E$. Vamos calcular a norma de u^+ e u^- . Segue

$$||u^{+}||^{2} = \int_{\mathbb{R}^{N}} \left| \nabla \left(\frac{u+v}{2} \right) \right|^{2} dx + \int_{\mathbb{R}^{N}} V(x) \left(\frac{u+v}{2} \right)^{2} dx$$

$$= \int_{\mathbb{R}^{N}} \left(\frac{|\nabla u|^{2}}{4} + \frac{\nabla u \nabla v}{2} + \frac{|\nabla v|^{2}}{4} \right) dx + \int_{\mathbb{R}^{N}} V(x) \left(\frac{u^{2}}{4} + \frac{uv}{2} + \frac{v^{2}}{4} \right)$$

de forma análoga

$$||u^{-}||^{2} = \int_{\mathbb{R}^{N}} \left(\frac{|\nabla u|^{2}}{4} - \frac{\nabla u \nabla v}{2} + \frac{|\nabla v|^{2}}{4} \right) dx + \int_{\mathbb{R}^{N}} V(x) \left(\frac{u^{2}}{4} - \frac{uv}{2} + \frac{v^{2}}{4} \right).$$

Por fim, calculando $||u^+||^2 - ||u^-||^2$, segue,

$$||u^+||^2 - ||u^-||^2 = \int_{\mathbb{R}^N} \nabla u \nabla v dx + \int_{\mathbb{R}^N} V(x) u v dx.$$

 $em \ particular \ se \ u = v, \ temos$

$$||u^+||^2 - ||u^-||^2 = \int_{\mathbb{R}^N} |\nabla u|^2 + \int_{\mathbb{R}^N} V(x)u^2 dx$$

Apresentaremos aqui o resultado principal deste capitulo, que é o Teorema 3.1. Em que vamos garantir a existência de solução ground state para o problema em (3.1). Para isso vamos mostrar inicialmente que são satisfeitas (A1) – (A3), para por fim combinar os argumentos da Proposição 1.3

Teorema 3.1 Supondo $(f_1) - (f_5)$. Então o problema (3.1) possui uma solução ground state.

Demonstração: Seja $E = H^1(\mathbb{R}^N)$, desde que (f_2) acontece e $E^0 = \{0\}$, $dim E^{\mp} = \infty$ e pelo Lema 3.1 podemos escrever

$$\int_{\mathbb{R}^N} (|\nabla u|^2 + V(x)u^2) dx = ||u^+||^2 - ||u^-||^2.$$

Portanto Φ pode ser escrito como em (A1), e notando que $F \geq 0$, I é fracamente semi-continuo inferiormente onde vemos isso diretamente pelo Lema de Fatou (apêndice), e fazendo uso da imersão contínua $H^1(\mathbb{R}^N) \hookrightarrow L^2_{loc}(\mathbb{R}^N)$ garante a menos de subsequência $u_n \rightharpoonup u$ em E então $u_n \rightarrow u$ em $L^2_{loc}(\mathbb{R}^N)$, agora sim, pelo Lema de Fatou

$$\liminf_{u_n \to u} \int_{\mathbb{R}^N} F(x, u_n) dx \ge \int_{\mathbb{R}^N} \liminf_{u_n \to u} F(x, u_n) dx \ge \int_{\mathbb{R}^N} F(x, u) dx.$$

Portanto I é fracamente semicontínuo inferiormente. O Lema 2.1 implica que (A1) é válido e (A2) pela Proposição 2.1. E ainda (A3) e $c = inf_{\mathcal{M}} > 0$ pela demonstração do Teorema 1.1.

Notemos agora que por (f_3) para cada, $\epsilon > 0$ existe C_{ϵ} tal que

$$|u| < C_{\epsilon} \Rightarrow |f(x, u)| \le \epsilon |u|$$

 $e \ por \ (f_1)$

$$|f(x,u)| \le \epsilon |u| + C_{\epsilon}|u|^{q-1}. \tag{3.3}$$

Resta então combinar os argumentos da Proposição 1.3. Considerando uma sequência (PS) (w_n) para Ψ . Então (u_n) com $u_n := m(w_n)$ é (PS) para Φ pelo Corolário 1.1. Assumindo

$$||u_n|| \to \infty$$
 com $v_n := \frac{u_n}{||u_n||} \rightharpoonup v$

Vemos como em (1.11), seguindo em $v_n \rightharpoonup 0$ em $E \setminus F$ depois de passar para uma subsequência, e ainda

$$||v_n^+|| \ge ||v_n^-|| e ||v_n^+||^2 + ||v_n^-||^2 = 1,$$

combinando,

$$\frac{\|v_n^+\|^2}{2} \ge \frac{\|v_n^-\|^2}{2} \quad e \quad \frac{\|v_n^-\|^2}{2} = \frac{1}{2} - \frac{\|v_n^+\|^2}{2}.$$

 $ent\tilde{a}o \|v_n^+\| \ge 1/\sqrt{2}$

Se v=0 e $v_n^+ \to 0$ em $L^q(\mathbb{R}^N)$ e usando (3.3), então para cada s>0, temos

$$\int_{\mathbb{R}^N} F(x, sv_n^+) dx \to 0$$

e portanto

$$d \ge \Phi(u_n) = \Phi(s_{v_n^+} v_n^+) \ge \Phi(sv_n^+) \ge \frac{s^2}{2} - \int_{\mathbb{R}^N} F(x, sv_n^+) dx \to \frac{s^2}{2}$$
 (3.4)

que é uma contradição para $s>\sqrt{2d}$. Dessa forma $v_n^+ \nrightarrow 0$. Por P.L. Lions Lema A.1 só nos resta que

$$\int_{B_1(y_n)} (v_n^+)^2 dx \ge \delta \tag{3.5}$$

para algum $\delta > 0$, $y_n \in \mathbb{R}^N$ e quase todo n. Desde que Φ e \mathcal{M} são invariantes por translação da forma $v = v(\cdot - y)$, $y \in \mathbb{Z}^N$, podemos assumir a translação $v_n = v_n(\cdot - y_n)$ para algum $y_n \in \mathbb{Z}^N$, que y_n é limitada. Desde que $v_n^+ \to v^+$ em $L^2_{loc}(\mathbb{R}^N)$, (pois se $u_n \to u$ em E implica $u_n \to u$ $L^2_{loc}(\mathbb{R}^N)$ e portanto $u_n(x) \to u(x)$ quase sempre, a menos de subsequência), assim, (3.5) implica que $v^+ \neq 0$ e consequentemente $v \neq 0$, uma contradição uma vez que o Lema de Fatou garante

$$0 \le \frac{\Phi(u_n)^2}{\|u_n\|} = \frac{1}{2} - \int_{\mathbb{R}^N} \frac{F(x, u_n)}{u_n^2} v_n^+ dx \to -\infty \quad quando \quad n \to \infty.$$
 (3.6)

Mostrando que (u_n) é limitada. Com isso podemos assumir $u_n \to u$ q.s. Consequentemente u é uma solução de (3.1) possivelmente trivial (u = 0). Se $u_n \to 0$ em $L^q(\mathbb{R}^N)$, então por (3.3) e Holder e designaldades de Sobolev vem

$$\int_{\mathbb{R}^N} f(x, u_n) u_n dx = o\left(\|u_n\|\right).$$

 $Ent \tilde{a}o$

$$o(\|u_n^+\|) = \Phi'(u_n)u_n^+ = \|u_n^+\|^2 - \int_{\mathbb{R}^N} f(x, u_n)u_n^+ dx = \|u_n^+\|^2 + o(\|u_n^+\|).$$

Consequentemente $u_n^+ \to 0$ em E e

$$\liminf_{n \to \infty} \Phi(u_n) = \liminf_{n \to \infty} \left(\frac{1}{2} \|u_n^+\|^2 - \frac{1}{2} \|u_n^-\|^2 - I(u_n) \right) \le \frac{1}{2} \lim_{n \to \infty} \|u_n^+\|^2 = 0,$$

contradizendo o fato de que $\inf_{\mathcal{M}} \Phi > 0$. Então $u_n \to 0$ em $L^q(\mathbb{R}^N)$ aplicando novamente o Lema P.L Lions como em (3.5) neste momento sobre u_n e como antes, podemos assumir a translação u_n , se necessário, $u_n \rightharpoonup u \neq 0$. Consequentemente u é uma solução não trivial de (3.1), e em particular, $u \in \mathcal{M}$.

Ainda resta mostrar que $\Phi(u) = c := \inf_{\mathcal{M}} \Phi$. Uma vez que a menos de subsequência que $u_n \to u$ q.s., resta agora combinar o Lema de Fatou com a definição do funcional, no que seque

$$c + o(1) = \Phi(u_n) - \frac{1}{2}\Phi'(u_n)u_n = \int_{\mathbb{R}^N} \left(\frac{1}{2}f(x, u_n)u_n - F(x, u_n)\right) dx \quad \forall n$$

$$\geq \int_{\mathbb{R}^N} \left(\frac{1}{2} f(x, u) u - F(x, u) \right) dx + o(1)$$
$$= \Phi(u) - \frac{1}{2} \Phi'(u) u + o(1) = \Phi(u) + o(1).$$

 $Portanto, \ \Phi(u) \leq c. \ \ Concluindo \ a \ demonstração.$

Capítulo 4

Um Sistema não Linear

Neste capitulo faremos agora uma aplicação para um sistema não linear, onde a resolução se dará de forma análoga com a aplicação feita no capitulo 2, com algumas alterações que serão apresentadas.

Consideremos o seguinte sistema:

$$\begin{cases}
-\Delta u_1 = h(x, u_2), & x \in \Omega \\
-\Delta u_2 = g(x, u_1), & x \in \Omega \\
u_1 = u_2 = 0, & x \in \partial\Omega.
\end{cases}$$
(4.1)

Supondo que g, h satisfazem $(f_1)-(f_4)$ do problema dado em (2.1), definamos

$$G(x, u_1) := \int_0^{u_1} g(x, s) ds$$
 e $H(x, u_2) := \int_0^{u_2} h(x, s) ds$.

 $e \ seja \ E := H_0^1(\Omega) \times H_0^1(\Omega) \ e$

$$\Phi(u) := \int_{\Omega} \nabla u_1 \cdot \nabla u_2 dx - \int_{\Omega} ((G(x, u_1)) + H(x, u_2)) dx \quad para \ u = (u_1, u_2) \in E.$$

Então Φ é $C^1(E,\mathbb{R})$ e pontos críticos de Φ são soluções de (4.1).

Novamente como de costume já feito nas aplicações anteriores, já adianto que a prova do Teorema abaixo, vai se resumir em escrever o funcional Φ da forma

em (A1), onde I vamos escrever da seguinte forma:

$$I(u) := \int_{\Omega} ((G(x, u_1)) + H(x, u_2)) dx. \tag{4.2}$$

O resto é análogo aos passos do problema dado em (2.1), com uma pequena alteração na demonstração da Proposição 2.1.

 $Vamos\ ent{\tilde{a}o}\ começar\ fazendo\ a\ caracterização\ do\ funcional\ \Phi\ com\ o\ seguinte$ Lema abaixo

Lema 4.1 Supondo $(f_1) - (f_4)$ do problema dado em (2.1) com a norma $\|\cdot\|$ em E definida por

$$||u||^2 = \int_{\Omega} (|\nabla u_1|^2 + |\nabla u_2|^2) \quad para \ u = (u_1, u_2) \in E.$$

Então

$$||u^+||^2 - ||u^-||^2 = \int_{\Omega} (|\nabla u_1|^2 + |\nabla u_2|^2),$$

Demonstração: De forma análoga ao Lema 3.1, notando que podemos escrever cada $u \in E$ como

$$u = u^{+} + u^{-} = \frac{1}{2}(u_1 + u_2, u_1 + u_2) + \frac{1}{2}(u_1 - u_2, u_2 - u_1)$$
 onde $u^{\mp} \in E^{\mp}$.

Calculando as normas $||u^+||^2$ e $||u^-||^2$ temos,

$$||u^+||^2 = \int_{\Omega} \left| \frac{\nabla u_1 + \nabla u_2}{2} \right|^2 + \int_{\Omega} \left| \frac{\nabla u_1 + \nabla u_2}{2} \right|^2$$

daí,

$$||u^+||^2 = \int_{\Omega} \left(\frac{|\nabla u_1|^2}{4} + \frac{|\nabla u_1 \nabla u_2|}{2} + \frac{|\nabla u_2|^2}{4} \right) + \int_{\Omega} \left(\frac{|\nabla u_1|^2}{4} + \frac{|\nabla u_1 \nabla u_2|}{2} + \frac{|\nabla u_2|^2}{4} \right),$$

e de maneira análoga

$$||u^{-}||^{2} = \int_{\Omega} \left(\frac{|\nabla u_{1}|^{2}}{4} - \frac{|\nabla u_{1} \nabla u_{2}|}{2} + \frac{|\nabla u_{2}|^{2}}{4} \right) + \int_{\Omega} \left(\frac{|\nabla u_{2}|^{2}}{4} - \frac{|\nabla u_{2} \nabla u_{1}|}{2} + \frac{|\nabla u_{1}|^{2}}{4} \right).$$

Por fim

$$||u^+||^2 - ||u^-||^2 = \int_{\Omega} (|\nabla u_1 \nabla u_2| + |\nabla u_2 \nabla u_1|)$$

e por (4.3) abaixo, segue

$$||u^+||^2 - ||u^-||^2 = \int_{\Omega} (|\nabla u_1|^2 + |\nabla u_2|^2)$$

Finalmente, vamos apresentar o ultimo Teorema deste trabalho, que é o Teorema 4.1, onde vamos garantir a existência de uma solução ground state e uma infinidade de pares de soluções para o sistema dado em (4.1). A prova desde resultado se dará de forma igual, a prova do Teorema 2.1. No entanto, precisamos ajustar algumas passagens na demonstração da Proposição 2.1, para assim termos a condição (A2) satisfeita, para podermos fazer uso do Teorema 1.1. E assim concluir, nossa ultima aplicação do método.

Teorema 4.1 Supondo g, h satisfazendo $(f_1) - (f_4)$ do problema dado em (2.1). Então o sistema (4.1) possui uma solução ground state. Além disso, se g é impar em u_1 e h é impar em u_2 , então o problema em (4.1) possui infinitos pares de soluções.

Demonstração: A forma quadrática

$$u \mapsto \int_{\Omega} \nabla u_1 \cdot \nabla u_2 dx$$

 \acute{e} definida e $E=E^+\oplus E^-$, onde

$$E^{\mp} = \{ u \in E : u_2 = \mp u_1 \}. \tag{4.3}$$

 $Ent\~ao\ dim E^{\mp}=\infty.$ Vamos ent\~ao escrever o funcional como em (A1), isto é, pelo Lema 4.1, assim temos

$$\Phi(u) = \frac{1}{2} \|u^+\|^2 - \frac{1}{2} \|u^-\|^2 - I(u).$$

Notemos que I em (4.2) é fracamente semicontínuo inferiormente. Aqui o restante da prova é exatamente igual a do Teorema 2.1. Assim a demonstração

já estaria encerrada se não fosse os seguintes ajustes na Proposição 2.1 item (ii) para este funcional. Tais ajustes seguem: Uma vez que o Lema 2.2 é valido para g e h, seguimos então na Proposição 2.1. Se u ∈ M, então

$$\Phi(u+w) < \Phi(u)$$
 sempre que $u+w \in \widehat{E}(u), w \neq 0$.

ou melhor, podemos escrever

$$u + w = (1 + s)u + v$$
 $com \ s \ge -1 \ e \ v \in E^-.$

Assim, de forma análoga da prova da Proposição 2.1 item (ii), temos

$$\Phi(u+w) - \Phi(u) = -\frac{\|v\|^2}{2} + \int_{\Omega} \nabla u_1 \cdot \nabla [s(\frac{s}{2}+1)u_2 + (1+s)v_2] dx$$

$$+ \int_{\Omega} \nabla u_2 \cdot \nabla [s(\frac{s}{2} + 1)u_1 + (1 + s)v_1] dx$$
$$+ \int_{\Omega} (G(x, u_1) - G(x, u_1 + w_1) + H(x, u_2) - H(x, u_2 + w_2)) dx,$$

assim

$$\Phi(u+w) - \Phi(u) = -\frac{\|v\|^2}{2} + \int_{\Omega} (g(x,u_1)z_1 + G(x,u_1) - G(x,u_1+w_1))dx$$
$$+ \int_{\Omega} (h(x,u_2)z_2 + H(x,u_2) - H(x,u_2+w_2))dx$$

pois como

$$z_1 = s(\frac{s}{2} + 1)u_1 + (1+s)v_1, z_2 = s(\frac{s}{2} + 1)u_2 + (1+s)v_2 \in E(u),$$

segue

$$0 = \Phi'(u)z_{(1,2)} = B(u, z_{(1,2)}) - \int_{\Omega} [g(x, u_1)z_1 + h(x, u_2)z_2].$$

Desde que $w=(w_1,w_2)\neq 0$, no mínimo uma das integrais acima é negativa, portanto $\Phi(u+w)<\Phi(u)$.

Portanto, pelo Teorema 1.1, o resultado está provado.

Assim concluímos nossa ultima aplicação do método da variedade de Nehari generalizada.

Apêndice A

Resultados Importantes

Definição A.1 (Função Normalização). Uma função $\eta \in C(\mathbb{R}^+, \mathbb{R}^+)$ é dita função normalização se, η é estritamente crescente, $\eta(0) = 0$ e

$$\eta(s) \to +\infty$$
 quando $s \to +\infty$.

Teorema A.1 Ver em [11]. Se E tem dimensão infinita, e $\Phi \in C^1(S, \mathbb{R})$ é limitado inferiormente e satisfaz a condição de Palais-Smale-(PS), então Φ tem infinitos pares de pontos críticos.

Lema A.1 Se (u_n) é uma sequencia (PS) para um funcional Φ e limitada, então somente uma das alternativas ocorrem:

- (i) $u_n \to 0 \ em \ H^1(\mathbb{R}^N)$
- (ii) existem $(y_n) \subset \mathbb{R}^N$ e $R, \beta > 0$ tais que

$$\int_{B_R(y_n)} |u_n|^2 \ge \beta > 0.$$

Lema A.2 (Lema de Fatou) Se $(f_n) \in M^+(X,X)$, então

$$\int (\liminf f_n d\mu) \le \liminf \int f_n d\mu$$

Teorema A.2 (Teorema 3 de [10]). Supondo que f é contínua e satisfaz a condição (2.2). Então

(i) $\Phi \in C^1(H_0^1(\Omega))$ e $\Phi'(u) = 0$ se e somente se $u \in H_0^1(\Omega)$ é uma solução do problema (2.1).

Teorema A.3 (Teorema 6 de [10]). Supondo que V, f são contínuas V é limitada e f satisfaz (3). Então

(i) $\Phi \in C^1(H^1(\mathbb{R}^N), \mathbb{R})$ e $\Phi'(u) = 0$ se, e somente se, $u \in H^1(\mathbb{R}^N)$ é solução de (3.1)

Teorema A.4 (Designaldade de Hölder): Seja $f \in L^p(\Omega)$ e $g \in L^q(\Omega)$, com $\frac{1}{p} + \frac{1}{q} = 1$ e $p \ge 1$. Então,

$$f.g \in L^1(\Omega)$$

e

$$\int_{\Omega} |f.g| \, dx \le \|f\|_{L^{p}(\Omega)} \, \|g\|_{L^{q}(\Omega)} \, .$$

Teorema A.5 (Designaldade de Poincaré) Seja Ω um aberto limitado do $\mathbb{R}^{\mathbb{N}}$. Então, existe uma constante $C = C(\Omega, p)$ tal que

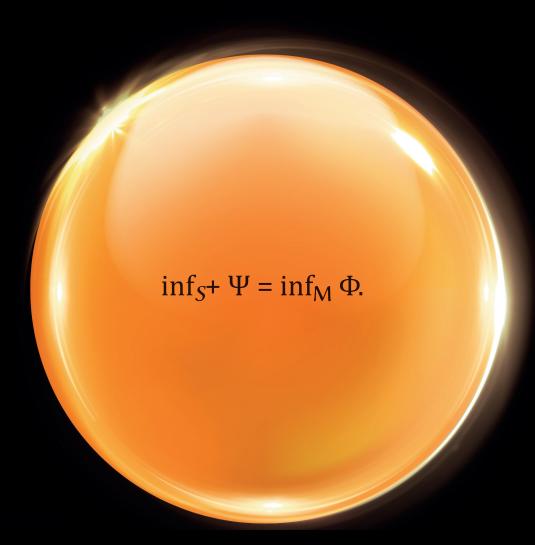
$$||u||_{L^p(\Omega)} \le C \left(\int_{\Omega} |\nabla u|^p dx \right)^{1/p}, \quad \forall \ u \in W_0^{1,p}(\Omega), \quad 1 \le p \le +\infty.$$

Bibliografia

- [1] A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Department of Mathematics, University of Pisa. 1993.
- [2] P. Drabek and S.I. Pohozaev, Positive solutions for the p-Laplacian: application of the Fibering method, Proc. Royal Soc. Edinb. A 127 (1997), 703-726
- [3] P. Kuchment, Floquet Theory for Partial Differential Equations, Birkh "auser, Basel, 1993.
- [4] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. IHP Analyse Non Lin´eaire 1 (1984), 109-145 and 223-283.
- [5] Y.Q. Li, Z.Q. Wang and J. Zeng, Ground states of nonlinear Schr"odinger equations with potentials, Ann. IHP Analyse Non Lin'eaire 23 (2006), 829-837.
- [6] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123.
- [7] Z. Nehari, Characteristic values associated with a class of non-linear secondorder differential equations, Acta Math. 105 (1961), 141-175.

- [8] A. Pankov, Periodic nonlinear Schrodinger equation with application to photonic crystals, Milan J. Math. 73 (2005), 259-287.
- [9] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. IV, Academic Press, New York, 1978.
- [10] A. Szulkin and T.weth , The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications. D.Y. Gao and D. Montreanu eds., International Press, Boston, (2010)597-632.
- [11] A. Szulkin, Ljusternik-Schnirelmann theory on C¹ -manifolds, Ann. IHP Analyse Non Lin´eaire 5 (1988), 119-139.
- [12] A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Func. Anal. 257 (2009), 3802-3822.

A Variedade de Nehari Generalizada e Aplicações



RFB Editora

Home Page: www.rfbeditora.com

Email: adm@rfbeditora.com WhatsApp: 91 98885-7730 CNPJ: 39.242.488/0001-07

Av. Governador José Malcher, nº 153, Sala 12,

Nazaré, Belém-PA, CEP 66035065

